rediff.com
News APP

NewsApp (Free)

Read news as it happens
Download NewsApp

Available on  gplay

Rediff.com  » News » IN PICS: Supernova turned massive star 'inside out'!
This article was first published 12 years ago

IN PICS: Supernova turned massive star 'inside out'!

Last updated on: March 30, 2012 14:07 IST

Image: A new study suggests the massive star that became the Cassiopeia A supernova remnant may have turned inside out as it exploded
Photographs: Courtsey: NASA, http://chandra.harvard.edu

A new X-ray study of the remnants of an exploded star suggests that the supernova that disrupted the massive star may have turned it inside out in the process.

Using very long observations of Cassiopeia A (or Cas A), a team of scientists has mapped the distribution of elements in the supernova remnant in unprecedented detail.

This information shows where the different layers of the pre-supernova star are located 300 years after the explosion, and provides insight into the nature of the supernova.

An artist's illustration showed a simplified picture of the inner layers of the star that formed Cas A just before it exploded, with the predominant concentrations of different elements represented by different colours: iron in the core (blue), overlaid by sulphur and silicon (green), then magnesium, neon and oxygen (red).

...

Tags: , Cassiopeia

IN PICS: Supernova turned massive star 'inside out'!

Image: This spectacular image of the supernova remnant Cassiopeia A is the most detailed image ever made of the remains of an exploded star
Photographs: Courtsey: NASA, http://chandra.harvard.edu

The image from NASA's Chandra X-ray Observatory used the same colour scheme to show the distribution of iron, sulphur and magnesium in the supernova remnant.

The data show that the distributions of sulphur and silicon are similar, as are the distributions of magnesium and neon.

Oxygen, which according to theoretical models is the most abundant element in the remnant, is difficult to detect because the X-ray emission characteristic of oxygen ions is strongly absorbed by gas in along the line of sight to Cas A, and because almost all the oxygen ions have had all their electrons stripped away.

A comparison of the illustration and the Chandra element map shows clearly that most of the iron, which according to theoretical models of the pre-supernova was originally on the inside of the star, is now located near the outer edges of the remnant.

...

Tags: Chandra , NASA

IN PICS: Supernova turned massive star 'inside out'!

Image: A composite image of Cassiopeia A
Photographs: Courtesy: NASA and The Hubble Heritage team

Surprisingly, there is no evidence from X-ray (Chandra) or infrared (Spitzer Space Telescope) observations for iron near the center of the remnant, where it was formed.

Also, much of the silicon and sulphur, as well as the magnesium, is now found toward the outer edges of the still-expanding debris. The distribution of the elements indicates that a strong instability in the explosion process somehow turned the star inside out.

This latest work, which builds on earlier Chandra observations, represents the most detailed study ever made of X-ray emitting debris in Cas A, or any other supernova remnant resulting from the explosion of a massive star.

It is based on a million seconds of Chandra observing time. Tallying up what they see in the Chandra data, astronomers estimate that the total amount of X-ray emitting debris has a mass just over three times that of the Sun.

This debris was found to contain about 0.13 times the mass of the Sun in iron, 0.03 in sulphur and only 0.01 in magnesium.

...

IN PICS: Supernova turned massive star 'inside out'!

Image: This X-ray image shows an expanding shell of hot gas produced by the explosion. This gaseous shell is about 10 light years in diameter, and has a temperature of about 50 million degrees
Photographs: Courtsey: NASA, http://chandra.harvard.edu

The researchers found clumps of almost pure iron, indicating that this material must have been produced by nuclear reactions near the centre of the pre-supernova star, where the neutron star was formed.

That such pure iron should exist was anticipated because another signature of this type of nuclear reaction is the formation of the radioactive nucleus titanium-44, or Ti-44.

Emission from Ti-44, which is unstable with a half-life of 63 years, has been detected in Cas A with several high-energy observatories including the Compton Gamma Ray Observatory, BeppoSAX, and the International Gamma-Ray Astrophysics Laboratory (INTEGRAL).

The study has been published in The Astrophysical Journal.

TOP photo features of the week


...
Tags: PHOTO , MORE , TOP
Source: ANI