Scientists have developed a new transparent bullet-proof armour that is lighter in weight and can easily be repaired on the field.
Thermoplastic elastomers are soft, rubbery polymers converted by physical means, rather than a chemical process, to a solid.
The solidification is reversible and enables damaged armor surfaces to be repaired 'on-the-fly' in the field.
"Heating the material above the softening point, around 100 degrees Celsius, melts the small crystallites, enabling the fracture surfaces to meld together and reform via diffusion," said Mike Roland, senior scientist at the US Naval Research Laboratory.
"This can be accomplished with a hot plate, akin to an iron, that molds the newly forming surface into a smooth, flat sheet with negligible effect on integrity," said Roland.
Up to now, scientists have tested the use of polymeric materials as a coating to achieve improved impact resistance of hard substrates.
Applying polyurea and polyisobutylene layers enhance the ballistic performance of armor and helmets, and achieve greater ballistic effectiveness and mitigation of blast waves.
By using a variation of employing thermoplastic elastomers, scientists were able to recreate superior ballistic properties of polyurea and polyisobutylene coatings, with the added benefit of the material being transparent, lighter than conventional bullet-resistant glass and repairable.
"Because of the dissipative properties of the elastomer, the damage due to a projectile strike is limited to the impact locus. This means that the affect on visibility is almost inconsequential, and multi-hit protection is achieved," Roland said.
Image: The NRL-developed transparent polymer armor consists of alternating layers of elastomeric polymer and a harder material substrate. Very small crystalline domains, which also provide rigidity, give the polymer its transparency. Photograph: US Naval Research Laboratory